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Abstract

We describe a numerical code to study the magnetohydrodynamic (MHD) turbulence in a reversed field pinch (RFP)
configuration by solving the compressible MHD equations in cylindrical coordinates. The compressibility requires that
particular attention should be paid to the boundary conditions to have an accurate control of wave reflections from the
boundaries of the computational domain. To fulfill these requirements the boundary conditions are calculated by a decom-
position into characteristic waves. We present a method to calculate such boundary conditions in curvilinear coordinates
and we apply it to the solution of the MHD equations in cylindrical geometry.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Numerical simulations of nonlinear plasma phenomena in experimental devices require the use of cylindri-
cal or toroidal geometry, in which the development of turbulence happens to be different from Cartesian
geometry because the majority of the energy exchanges among the modes takes place in the radial and axial
directions [1] and the stability properties of the equilibrium are different in Cartesian and cylindrical/toroidal
geometries. Moreover, in reversed field pinch (RFP) devices [2], the plasma b (the ratio between the kinetic
and magnetic plasma pressure) is rather low (typically b . 10�1), that means the compressibility effects in
the plasma should not be negligible (the incompressible case corresponding to b!1).
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The numerical solution of the compressible MHD equations presents different difficulties. A first problem is
the presence of many more terms in the energy equation, with respect to the incompressible case, which
requires long simulation times. Another problem is the choice of boundary conditions. A possible choice,
which is commonly used for solving the hydrodynamic equations, are the so-called open boundary conditions
[3], which are obtained by analyzing the propagation properties of the simple waves across the boundaries of
the numerical domain. This technique has been widely used in Cartesian geometry for fluid flows, but a clear
derivation of the conditions for the cylindrical MHD case is missing in the literature, at the best of our knowl-
edge. In this paper, we give a detailed derivation of the method for the cylindrical, MHD case.

Merlin and Biskamp [4] and Cappello and Biskamp [5] studied the development of turbulence in a RFP
configuration by solving the MHD equations in cylindrical geometry. However, to avoid the problems that
we discussed above, they simplified the equations by assuming constant density (namely incompressibility)
and vanishing pressure. This allowed them to avoid both numerical problems coming from compressibility
and the solution of the Poisson equation for the pressure (as it is necessary in the incompressible case).
The use of such an approach is of course somewhat questionable. However, it has been used until present time
[6,7].

In this paper, we solve the fully compressible, nonlinear, MHD equations in both cylindrical and toroidal
coordinates. We describe in detail the method used to derive the boundary conditions imposed on density,
pressure, velocity and magnetic field. We solve the MHD equations with no approximation of any sort in a
fully three-dimensional case. This involves, of course, very long computational times, hence the code has been
efficiently parallelized by using MPI directives.

The plan of the paper is the following: in Section 2, we describe the physical domain and the equations that
are solved by the code. In Section 3, we describe briefly the numerical techniques used for the spatial and tem-
poral discretizations of the equations. In Section 4, we discuss the boundary conditions, whose derivation is
explained in deep detail. The bulk of the calculation is reported in Appendix A. Finally, we present some tests
of the numerical code.

2. Equations of the model

To describe a plasma confined in a RFP device, we consider the full set of compressible MHD equations,
taking into account viscous (l), resistive (g) and thermal (kt) transport coefficients.

The RFP plasma is described by a toroidal geometry with coordinates (r,h,z), such that:
0 6 r 6 1; 0 6 h 6 2p; z ¼ nðr; hÞR/;
where n ¼ ð1� r
R cos hÞ is the toroidal shape function, R is the ratio of the major radius to the minor radius of

the torus (aspect ratio) and / represents the coordinate along the torus axis. The cylindrical case corresponds
to n = 1. Boundary conditions at the r = 1 bounding wall are properly described using a characteristic flux
decomposition, while periodicity is assumed in the other two directions (h and /).

The MHD equations in terms of the field variables density (q), momentum components Mi = qvi,
Mi = (qvr,qvh, qvz), magnetic field components Bi = (Br,Bh,Bz) and thermal pressure (p), in dimensionless
form, are given by:
oq
ot
¼ �r �M; ð1Þ

oM

ot
¼ �r � F þ J� B; ð2Þ

oB

ot
¼ �r� E; ð3Þ

op
ot
¼ �½r � ðvp � ktrT Þ þ ðc� 1Þpr � v� þ ðc� 1ÞH p: ð4Þ
In Eq. (4), c = 5/3 is the adiabatic index, T is the temperature T = p/q, and kt is the thermal conductivity. In
the simulations that we describe in this paper kt has been set to zero assuming that typical values in RFP plas-
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mas are very small. Some tests with non-vanishing values of kt showed that there are no significant differences
in the dynamics. The flux tensor F in Eq. (2) has components
F ij ¼ Mivj þ pdij � lrij; ð5Þ

where rij is the stress tensor and l the dimensionless viscosity. In the induction equation (3) the electric field E
is given by the expression:
E ¼ �v� Bþ gJ;
where J = $ · B defines the current density and g is the dimensionless resistivity. In the pressure equation (4),
the heat production term Hp is given by:
H p ¼ gJ 2 þ l
1

2
U ijUij �

2

3
ðr � vÞ2

� �
;

where g and l are the dimensionless resistivity and the viscosity and the tensor Uij is defined as
U ij ¼ rij þ
2

3
ðr � vÞdij: ð6Þ
We use the minor radius a of the torus (or the radius of the cylinder) as the unit length scale to non-dimen-
sionalize the equations. We choose as unit measure for the magnetic field and for the mass density typical val-
ues B0 and q0, respectively, which allows us to define a characteristic value for the Alfvén velocity
vA ¼ B0=

ffiffiffiffiffiffiffiffiffiffi
4pq0

p
. Hence, we express the velocity in terms of vA and the time in terms of the typical Alfvén time:

sA = a/vA. Finally, the pressure p is measured in units of q0v2
A.

2.1. MHD equations using toroidal components

The differential line element ds in toroidal geometry is given by:
ds2 ¼ h2
1 dr2 þ h2

2 dh2 þ h2
3 d/2;
where
h1 ¼ 1; h2 ¼ r; h3 ¼ Rnðr; hÞ;
reducing to the usual cylindrical case for n = 1. Denoting the toroidal derivative by:
o

oz
� 1

Rn
o

o/
;

the gradient operator components are:
r � o

or
;
1

R
o

oh
;
o

oz

� �
:

while the divergence operator is written as:
½r � v�t ¼ ½r � v�c þ
vrnr

n
þ vhnh

rn
:

Here:
nr ¼ �
1

R
cos h; nh ¼

r
R

sin h
and the term [$ Æ v]c is the usual divergence form in cylindrical coordinates:
½r � v�c ¼
1

r
oðrvrÞ

or
þ 1

r
ovh

oh
þ ovz

oz
:
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The curl operator in toroidal coordinates has components:
½r � v�r ¼
1

r
ovz

oh
� ovh

oz
þ vznh

rn
;

½r � v�h ¼
ovr

oz
� ovz

or
� vznr

n
;

½r � v�z ¼
1

r
oðrvhÞ

or
� 1

r
ovr

oh
:

In Eq. (2), the flux derivatives r � F are then expressed in explicit form by:
½r � F �r ¼
oF r;r

or
þ 1

r
oF r;h

oh
þ oF r;z

oz
þ ðF r;r � F h;hÞ

r
þ ðF r;r � F z;zÞnr

n
þ F r;hnh

rn

½r � F �h ¼
oF r;h

or
þ 1

r
oF h;h

oh
þ oF h;z

oz
þ 2F r;h

r
þ ðF h;h � F z;zÞnh

rn
þ F r;hnr

n

½r � F �z ¼
oF r;z

or
þ 1

r
oF h;z

oh
þ oF z;z

oz
þ F r;z

r
þ 2F h;znh

rn
þ 2F r;znr

n
:

Finally, the rij viscosity tensor has components:
rr;r ¼ 2
ovr

or
� 2

3
r � v;

rh;h ¼ 2
1

r
ovh

or
þ 2

vr

r
� 2

3
r � v;

rz;z ¼ �ðrr;r þ rh;hÞ;

rr;h ¼ rh;r ¼
ovh

or
� vh

r
þ 1

r
ovr

oh
;

rr;z ¼ rz;r ¼
ovz

or
þ ovr

oz
� vz

nr

n
;

rh;z ¼ rh;z ¼
1

r
ovz

oh
þ ovh

oz
� vz

nh

rn
3. Algorithms for space derivatives

Space derivatives are computed using compact finite differences (CFD) along the radial direction r, which
allow a high degree of precision in an inhomogeneous system (with respect, for instance, to standard finite dif-
ference algorithms) at a moderate operational cost. Note that when small scales are excited, like in a turbulent
system, the largest wavenumbers are not perfectly resolved due to the phase errors of the numerical scheme [8].
However the range of well resolved scales is much larger than with ordinary finite differences. Along the two
other coordinates (h and /), we exploit the natural periodicity of the problem and we use fast Fourier transform
(FFTs) algorithms. Finally, time integration is given by a third-order Runge–Kutta explicit scheme.

3.1. Pseudo-spectral algorithm for periodic coordinates

The code evaluates the spatial derivatives for the periodic angular coordinates (h,/) by transforming the
quantities in the spectral Fourier space. This is realized first by introducing the uniform grids:
hk ¼ Dhk; k ¼ 0; 1; . . . ;N h � 1; Dh ¼
2p
N h

;

/l ¼ D/l; l ¼ 0; 1; . . . ;N/ � 1; D/ ¼
2p
N/

;

Nh and N/ being the number of grid points in the azimuthal and axial directions, respectively. Then the
quantities are transformed in the spectral space by using discrete fast Fourier transforms, alternatively in
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the h or / directions, according to the variable whose derivative has to be computed. Finally, the quantities
are multiplied by the appropriate wavenumber and transformed back to the physical space. In practice the
program works in the physical space, transforming the quantities in the spectral space only when a deriv-
ative with respect to h or / has to be computed. This allows to save CPU time: (a) the number of nonlinear
terms in the equations is higher than the number of derivatives to calculate; (b) the spatial derivatives in the
radial direction are computed directly in the physical space. Furthermore, by using this technique, we do
not need to use two-dimensional FFTs, which decreases the total amount of memory needed by the code.
In fact, when using two-dimensional FFTs one needs, to save CPU time, to compute the derivatives in the
two directions simultaneously and to store these intermediate values if they are not immediately used. This
involves a much larger use of computer memory with respect to our case. The pseudo-spectral scheme is not
de-aliased.

As usual, for any variable f(hk,/l) we denote with f̂ mð/lÞ the real-to-complex h-transformed variable
f̂ mð/lÞ ¼
1

N h

XNh�1

k¼0

f ðhk;/lÞe�imhk ; m ¼ 0; 1; . . . ;N h=2;
where f̂ �m ¼ f̂ �m, and with f̂ m;n the complex-to-complex /-transformed variable
f̂ m;n ¼
1

N/

XN/�1

l¼0

f̂ mð/lÞe�in/l ; n ¼ 0; 1; . . . ;N/=2;
with the reality condition f̂ �m;�n ¼ f̂ �m;n.

3.2. Compact FD algorithms for the radial coordinate

For the radial coordinate we use compact finite difference algorithms [8] to compute the derivatives. Over
the interval 0 6 r 6 1 we can choose either a uniform grid spacing of length Nr
rj ¼ Drðjþ 1=2Þ; j ¼ 0; 1; . . . ;Nr; Dr ¼
1

Nr þ 1=2
or a nonuniform grid r(x) of the form
rj ¼ L sinðxj=2Þ; xj ¼ Dxðjþ 1=2Þ; j ¼ 0; 1; . . . ;Nr; Dx ¼
p

Nr þ 1=2
;

where L is a normalization scale defined by the condition rNr ¼ 1. The spacing between grid points decreases
when approaching r = 1, in order to enhance spatial resolution close to the physical boundary of the torus,
where we expect the majority of the dynamical phenomena happen. In both cases, the r = 0 point is avoided
by taking a staggered grid spacing. Therefore, the regularity conditions around the r = 0 point are defined by
noticing that f0 labels the value at r = Dr/2 and
f�j ¼ �fj�1; j ¼ 1; 2; . . . ð7Þ

for even (odd) functions f(r). Parity conditions for field variables are given in terms of the h-transformed com-
ponents f̂ mðrÞ, in the following way [9]:

	 even functions are even for even m = 0,2,. . . and odd for odd m = 1,3, . . .
	 the reverse condition holds for odd functions.

The MHD field variables satisfy the parity conditions:

(1) scalars (q,p) and axial vector components (vz,Bz) are even functions,
(2) radial and poloidal vector components (vr,vh,Br,Bh) are odd functions.
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In the case of the nonuniform grid the radial derivatives are computed as an x derivative:
d

dr
¼ JðxÞ�1 d

dx
; JðxÞ ¼ dr

dx
¼ L

2
cosðx=2Þ:
Since the Jacobian function is an even function, parity conditions for f(r) carry over unchanged for f(x) when
r! x.

To compute the r (or x) derivative Df ” f 0(x), we use forth-order accurate compact finite difference schemes
given by the implicit system
½Df �j�1 þ 4½Df �j þ ½Df �jþ1 ¼
3

D
½fjþ1 � fj�1�;
at the interior points j = 0,1, . . .,Nr � 1 and the second-order scheme
2½Df �j�1 þ ½Df �j ¼
1

2D
½5f j � 4f j�1 � fj�2�;
at the j = Nr boundary point. Due to the fact that the matrix inversion is a global operation, the higher numer-
ical error at the boundary propagates to the interior points. However, we checked that when the resolution is
sufficiently high, the theoretical precision far from the boundary is recovered. Note that the j = 0 point is an
interior point and j = �1 values are then provided by the parity conditions. Since the code is 3D and com-
pressible, the demands in terms of CPU time and storage are quite severe. To improve the performances
and lower the memory storage, the code has been parallelized by using MPI directives. We parallelized the
code along the z direction: the computational domain is divided in equal sub-domains along z and each of
them is assigned to a processor. Unfortunately, the speed up in CPU times is limited from the fact that parallel
FFT procedures do not perform well in one dimension, due to the excess of communications needed to trans-
fer data among the processors.

4. Boundary conditions

Boundary conditions can be of two types: (a) physical boundary conditions, imposed by the nature of the
problem under study, and (b) numeric boundary conditions, necessary to make the problem numerically
well-posed. The physical conditions are imposed by the problem that must be solved, but they may not be
sufficient to solve the problem numerically. The number of necessary and sufficient boundary conditions
can be less than the number of primitive variables. In these cases, even if the physical boundaries make the
mathematical problem well-posed, then the numerical problem may be ill-posed due to the discretization of
the computational domain [10]. If this is the case it is necessary to specify numerical boundary conditions
in addition to the physical ones. The numerical boundaries can be considered as compatibility relations that
avoid the uncertainty in the variables that are not specified by the physical conditions and they prevent numer-
ical effects like wave reflections from a nonreflecting boundary. Usually, in the incompressible case, the phys-
ical boundary conditions are sufficient to provide enough conditions for all the physical quantities, except the
pressure, which must be calculated to guarantee the solenoidality of the velocity field [11]. On the contrary, in
the compressible case the pressure does not depend on the velocity field and additional boundary conditions
must be specified for the density and the pressure (or temperature).

The method used to calculate the numerical boundary conditions is based on a local one-dimensional invis-
cid (LODI) set of equations written at the boundary in characteristic form [3]. Let us consider a hyperbolic set
of equations in the following form:
oU

ot
þ A

oU

ox
¼ 0; ð8Þ
where U(x, t) is an n-component vector and A is an n · n matrix. We look for solutions of the form:
U ¼ Uðx� ctÞ;

which are waves that propagate in the x direction with speed c. If we define
n ¼ x� ct
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we can write Eq. (8) in the following form:
A
oU

on
¼ c

oU

on
: ð9Þ
Hence the velocities of the waves are the eigenvalues of the matrix A, which can be calculated by imposing the
following condition:
jA� cIj ¼ 0;
where I is the unit matrix.
For each eigenvalue c we can calculate an eigenvector Wc by solving the system (9). A generic vector that is

solution of the system (8) can be written as a linear combination of the eigenvectors:
oU

on
¼
X

c

LcWc:
The eigenvalues can be both positive and negative, which means that the equations describe both incoming
and outgoing waves. The time derivative of the vector U at the boundary has a contribution from incoming
waves and a contribution from outgoing waves:
oU

ot
¼ oU

ot

� �
in

þ oU

ot

� �
out

:

The outgoing part (oU/ot)out can be evaluated from internal points, which, on the other hand, do not give any
information about the incoming contribution (oU/ot)in. The physical boundary conditions give the possibility
of finding a relation between the amplitudes of the incoming waves and the amplitudes of the outgoing waves,
so that the incoming waves can be expressed as a function of the outgoing waves.

The characteristic boundary conditions have usually been calculated for hydrodynamical problems in
Cartesian coordinates. Here we calculate them for MHD equations in cylindrical coordinates. The extension
to the toroidal case is straightforward, though more complicated from the point of view of computational
details.

In the problem that we want to study, at the point r = 1, the plasma is assumed to be bounded by a solid,
viscous, wall acting as a perfect conductor, which leads to the following physical conditions:
Brðr ¼ 1Þ ¼ 0;

vrðr ¼ 1Þ ¼ 0;

vhðr ¼ 1Þ ¼ 0;

v/ðr ¼ 1Þ ¼ 0:
The first condition means that the magnetic field cannot penetrate the wall (perfect conductor) and the last
three conditions are due to the presence of a finite viscosity at the wall, imposing that the fluid and the wall
travel at the same (vanishing, in this case) speed. The boundary values for the other variables (Bh,B/,q,p) have
to be derived using a characteristic decomposition method.

For that purpose, we consider the contributions to the time derivatives coming from the radial derivatives
of the ideal terms. The Reynolds numbers are considered to be high enough that the dissipative terms can be
viewed as corrections to be applied separately. The ideal MHD equations can be written in the form of con-
servation laws of the kind expressed by Eq. (8). To solve this system of equations it is necessary to choose a
coordinate system. Even though the vector U satisfies the conservation law, its individual components are not
necessarily conserved in a given coordinate system. This is the case of the cylindrical coordinates, where a
source term is present due to the geometry. If we write the equations using the covariant components of
the vectors, the equations take the form of conservation laws with the addition of geometric source terms,
where the vector U is:
U ¼ ðq; vr; rvh; vz;Br; rBh;Bz; pÞ:
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A technique to extend the wave propagation method to curvilinear geometry is to convert the equations in
locally valid orthonormal bases, solve the resulting Cartesian problems and then apply a deorthonormaliza-
tion [12]. However, in our case the source terms vanish due to the physical boundary conditions that we have
chosen, so that the characteristic decomposition can be done as in the Cartesian case, but with a different vec-
tor of unknown variables, containing the covariant components of the velocity and magnetic field. The results
obtained with this procedure can be used for the MHD equations every time the source terms are zero, which
depends on the choice of physical boundary conditions.

Following the procedure described above, we find the velocities of the waves that can propagate in the
radial direction and write the time derivative at the boundary for all the physical quantities as linear combi-
nations of the wave amplitudes (the details of the calculations are reported in Appendix A). The LODI equa-
tions at the boundary, with conditions vr = vh = vz = Br = 0, are
oq
ot
¼ � cf

c2
T

ðLþf � L�f Þ; ð10Þ

ovr

ot
¼ � c2

f

cp
ðLþf þ L�f Þ; ð11Þ

oðrBhÞ
ot

¼ �rBh
cf

cp
ðLþf � L�f Þ; ð12Þ

oBz

ot
¼ �Bz

cf

cp
ðLþf � L�f Þ; ð13Þ

op
ot
¼ �cfðLþf � L�f Þ; ð14Þ
where Lþf and L�f are the amplitudes of the outgoing and incoming fast magnetosonic waves, respectively, cf is
their velocity and cT is the sound speed. The fact that the only waves that give a contribution to the time deriv-
atives at the boundary are the magnetosonic fast waves could have been expected. In fact, since the velocity
and the magnetic field radial components are both vanishing at the boundary, the only propagating mode that
could cross the boundary is the fast magnetosonic wave.

The incoming waves depend on the solution out of the computational domain and cannot be calculated
from the interior points. Hence the incoming wave’s amplitude L�f must be expressed in terms of the outgoing
wave’s amplitude Lþf [3,13]. The condition vr = 0 implies:
L�f ¼ �Lþf ;
which is a condition of reflection for the fast magnetosonic waves at the boundary. Finally, the amplitude of
the outgoing wave can be expressed in terms of the radial derivatives of the physical quantities calculated from
the interior points:
Lþf ¼
c2

T

2c2
f

Bh
1

r
oðrBhÞ

or
þ Bz

oBz

or
þ op

or
þ qcf

ovr

or

� �
: ð15Þ
The time evolution at the boundary for q, Bh, Bz and p is given by Eqs. ((10), (12)–(14)) , where Lþf is given by
Eq. (15), with the addition of all the terms of the original Eqs. (1)–(4) that have not been included in the char-
acteristic analysis, which contain derivatives with respect to h and z and the dissipative terms. In addition, the
physical boundary conditions vr = vh = vz = Br = 0 are imposed. The characteristic boundary conditions have
been calculated for the ideal equations. In the non-ideal case, when viscosity and resistivity are present in the
plasma, additional physical boundary conditions may be necessary.

Poinsot and Lele [3] have tested several viscous boundary conditions for different sets of ideal boundary
conditions. When the velocity is imposed on the boundary they found that a good choice is to impose that
the normal stress is constant along the normal to the boundary. In our case, in cylindrical coordinates, this
condition corresponds to: ½r � ��r�r ¼ 0. Moreover, due to the presence of resistivity, additional conditions must
be imposed on the magnetic field. On a conducting wall the electric field has vanishing parallel components,
and the same condition must hold in the plasma at the boundary because the parallel components of the elec-
tric field are continuous crossing the wall. At the plasma boundaries v = 0, so the electric field is given by



1882 M. Onofri et al. / Journal of Computational Physics 226 (2007) 1874–1890
E = gJ = g$ · B, and the condition of vanishing parallel electric field implies Jy = Jz = 0. Therefore we
impose vanishing poloidal and toroidal currents at the boundary, which ensures the continuity of the electric
field across the boundary. The boundary condition Jz = 0 is not imposed for the (0,0) mode. In fact, to obtain
plasma relaxation with a field reversal, the system must be driven from the outside. This is realized assuming a
constant toroidal current, which is equivalent to impose a constant poloidal magnetic field at the boundary for
the (0,0) mode [14–17].

5. Setup of the initial conditions

In order to test the numerical code we checked the conservation of energy and applied it to a simplified case
that has been studied previously [4]. A reversed field pinch is a toroidal configuration used to confine plasmas
in fusion machines [18–20]. The poloidal and toroidal components of the magnetic field in an RFP are mostly
generated by electric currents flowing in the plasma and they are of the same order of magnitude. This con-
figuration is characterized by a safety factor q = rB//RBh which is less than unity in the core and negative at
the edge, and the toroidal magnetic field changes sign at the edge with respect to the core. Due to this shape of
the safety factor many m = 1 and n > R/a modes are resonant in the plasma, while the B/ reversal surface is
resonant for all m = 0 modes [2] (we remind the reader that a is the torus minor radius and R is the major
radius).

In a typical RFP experiment the discharge is generated by inducing a strong toroidal current in an ionized
plasma with a weak, initially homogeneous toroidal magnetic field B0, corresponding to the toroidal flux
wt = pa2B0. In the initial phase the discharge is rather turbulent, since the configuration is highly unstable.
Such turbulent states are expected to show self-organization [1]. It has been observed that, no matter what
the initial conditions are, the reversed field pinch configuration is reached spontaneously and maintained in
time against resistive diffusion with enough applied toroidal voltage [21–23]. The plasma provides the conver-
sion of the supplied poloidal magnetic flux into toroidal magnetic flux through a dynamo mechanism. This
evidence has led to the formulation of plasma relaxation theory by Taylor [24], who conjectured that the
self-organization is reached by decay of the energy W under the constraint of constant magnetic helicity.
The result of this relaxation is a force-free magnetic field.

As the initial state in this simulation a force-free equilibrium magnetic field has been chosen, characterized
by the following safety factor [25]:
qðrÞ ¼ 0:4ð1� 1:8748r2 þ 0:83232r4Þ; ð16Þ

which is obtained by resistive diffusion from a stable configuration [26]. The magnetic field can be calculated
from the safety factor and from the force-free condition:
J� B ¼ 0: ð17Þ

By looking for solutions of the form:
Bh ¼ BhðrÞ;
Bz ¼ BzðrÞ:
Only the r component of Eq. (17) is not identically zero and it becomes:
d

dr
B2

h þ B2
z

2

� �
þ B2

h

r
¼ 0: ð18Þ
We can express Bz in terms of the safety factor q:
Bz ¼
qBh

r
ð19Þ
and Eq. (18) can be written as:
d

dr
B2

h

q2 þ r2

2r2

� �� �
þ B2

h

r
¼ 0:
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The above equation can also be put in the following form:
q2 þ r2

2r2

dB2
h

dr
þ B2

h

1

r
þ d

dr
q2 þ r2

r2

� �� �
¼ 0
which can be solved for Bh:
B2
h ¼ B2

h0
exp �

Z
2r2

q2 þ r2

1

r
þ d

dr
q2 þ r2

r2

� �� �
dr

� �
whilst Bz can be obtained from Eq. (19). This equilibrium is strongly unstable with respect to the
(m = 1,n = �2) mode, therefore the following perturbation has been superposed to the equilibrium field:
vr ¼ �ð1� r2Þðcosðh� 2z=RÞ þ cosðh� z=RÞÞ; ð20Þ
vh ¼ �ð1� r2Þðsinðh� 2z=RÞ þ sinðh� z=RÞÞ: ð21Þ
The r dependence has been chosen to be compatible with the boundary conditions (vr and vh must be even
functions of r for the m = 1 mode and they must vanish at the boundary) � is the amplitude of the perturba-
tion, which has been set to � = 10�4, namely we start with a linear perturbation.

The boundary condition imposed on the mean poloidal magnetic field (Bh(a) = const.) corresponds to the
constancy of the total toroidal current I:
I ¼
Z

S
J � n̂ ds ¼

Z
S
ðr � BÞ � n̂ ds ¼

Z
B � dl ¼

Z
BhðaÞa dh ¼ 2paBh:
The axial magnetic flux wt is also conserved due to the boundary conditions, as can be seen from Eq. (3):
dwt

dt
¼ �

Z
S
ðr � EÞ � n̂ ds ¼ �

Z
E � dl ¼ �

Z
EhðaÞa dh ¼ �2pa�Eh:
Since E = gJ � v · B, from the conditions Jh = v = 0 at the boundary, it follows that dwt/dt = 0. This means
that the average of the axial field over the plasma cross-section ÆBzæ = wt/pa2 is also constant in time. There-
fore, the pinch parameter:
H ¼ aI
2wt
(namely the toroidal current normalized to the axial magnetic flux) must remain constant in time, while in gen-
eral the field reversal parameter:
F ¼ B0;0
z ðaÞ
hBzi
(representing the normalized toroidal field at the boundary) will show a temporal dependence. These
boundary conditions make the system strongly driven from the outside since there is a continuous input
of electromagnetic energy. In fact the Poynting vector at r = a, for the mean fields (the (0, 0) mode) can be
written as:
E0;0 � B0;0 ¼ �r̂E0;0
z B0;0

h ¼ �r̂g
B0;0

h

r
oðrB0;0

h Þ
or

:

The other two components of the Poynting vector are vanishing at the boundary because Jh = Jr = 0 and
v = 0. The dynamo action is demonstrated if the reversal of the axial field (F < 0) is maintained. This cannot
be obtained in a purely axisymmetric situation, but it requires the presence of modes (m,n) 6¼(0,0) in the spec-
trum. If only the mean field is present, its temporal evolution shows the loss of the initial reversal and a steady
state is produced, without any reversal.

As a first test the conservation of energy has been checked. By multiplying Eq. (2) by v and Eq. (3) by B, we
obtain the following energy balance equation:



Fig. 1. Energy conservation: the physical dissipation (solid line) is much larger than the numerical dissipation (dashed line).
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o

ot
1

2
B2 þ 1

2
qv2

� �
þr � v

1

2
qv2 þ p

� �
� ðv� BÞ � B� gB� ðr � BÞ þ lð��r � vÞ

� �

� pr � vþ gðr � BÞ2 þ lð��r � rÞv ¼ 0: ð22Þ
The first term in Eq. (22) is the time derivative of kinetic and magnetic energy, the terms in square brackets
represent the flux of energy through the boundary, the term p$ Æ V is the work of pressure forces and the last
two terms represent the energy dissipation due to the viscosity and the resistivity. Note that the last two terms
are equal to the heat production term Hp in Eq. (4). Integrating Eq. (22) over the computational domain we
obtain the following equation:
Z

V

o

ot
1

2
B2 þ 1

2
qV 2

� �
d3r�

Z
S

g
Bh

r
oðrBhÞ

or
dS þ

Z
V

p r � V d3rþ
Z

V
gðr � BÞ2 þ lð��r � rÞV
h i

d3r ¼ 0

ð23Þ

The surface integral is the radial component of the Poynting vector, which represents the injection of energy
into the system.

The analytical relation (23) is not exactly satisfied numerically due to truncation errors introduced by the
discretization in space and time. We define ‘‘numerical dissipation’’ the non-vanishing value of the left-hand
side of Eq. (23) evaluated numerically. To assess the importance of the truncation induced by the numerical
scheme, one can compare this quantity with the physical dissipation, namely with the loss of energy due to the
physical viscosity and resistivity (the last integral in Eq. (23)). In Fig. 1 it is shown that the energy dissipated
by physical mechanisms is much larger than the energy dissipated by numerical effects, therefore the energy
balance equation (23) is well satisfied.

6. Results

Although the code works both in cylindrical and toroidal geometry, up to now we started by studying only
the cylindrical case, carrying out a series of runs, to analyze the differences with previous works, which use the
same geometry.

A first run (Run 1) has been performed with simplified equations to verify that the reversal of the magnetic
field is obtained in the case, studied in previous works [4], where the density q is assumed to be constant in
space and time and the pressure p is assumed to be vanishing. There is an inconsistency in this approximation.
In fact it gives an inward velocity V 0;0

r < 0, which requires $ Æ V6¼0, and the density following the continuity
equation would not remain homogeneous, but would become more concentrated in the center.

The viscosity and resistivity used in the run are l = 10�4, g = 10�3. We used 100 grid points in the radial
direction, 16 in the poloidal direction and 32 in the z direction. The aspect ratio is R/a = 1, which is not real-
istic, indeed typical values of the aspect ratio for RFP configurations are about 4. On the other hand, using
high values of the aspect ratio implies the use of a larger axial wavenumber spectrum, since the unstable mode
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(1,�2) for R/a = 1 is transposed to the (1,�8) mode for R/a = 4. For this reason this choice has also been
adopted in this paper [4].

The energy of the Fourier harmonic m = 1, n = �2, which is excited by the initial conditions, grows with
time and nonlinear interactions transfer energy to smaller wavelengths. After t = 100 the energy is transferred
to the shortest wavelengths allowed by our resolution, and the spectrum of magnetic energy at t = 100 is
shown in Fig. 2. The evolution is characterized by the growth of the unstable mode (�1,2) and its harmonics.
The effect of these modes is the reversal of the mean toroidal field, and the final state is dominated by a single
helicity, as it was found in [4].

In Fig. 3 the temporal evolution of the field reversal parameter is shown. Initially the configuration loses the
reversal very quickly, but, owing to the action of the unstable modes, it is restored after t . 50.

Fig. 4 shows the toroidal mean magnetic field B0;0
z as a function of r at t = 100, which is reversed at the

boundary.
Fig. 2. Magnetic energy spectrum at t = 100 for Run 1.

Fig. 3. Temporal evolution of the reversal parameter for Run 1.

Fig. 4. Toroidal component B0;0
z of the magnetic field at t = 100 for Run 1.
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In the second run (Run 2), we tried to solve the full set of compressible equations, using the same pertur-
bations and aspect ratio that have been used in the previous case, normalized viscosity and resistivity
l = g = 2 · 10�4, Nr = 128, Nh = 32, N/ = 64 . The results obtained from this simulation show that no rever-
sal is obtained. Contrary to what happened in the previous case, the radial velocity is not directed inward, but
it brings the plasma towards the boundary and the density decreases in the center. This must be due to the
excessive heat of the plasma in the core, produced by the low Reynolds numbers, which overcomes the
dynamo effect (Fig. 5).

Realistic values of the Reynolds numbers cannot be used in the numerical simulation due to the high res-
olution and computational time that would be necessary. Using lower Reynolds numbers we can still describe
correctly the energy cascade up to the dissipation scale, but with a shorter energy spectrum. In an incompress-
ible plasma, this prevents to simulate correctly only the phenomena that happen at small scales. On the con-
trary, in a compressible plasma, the use of low Reynolds numbers may also affect the dynamics of the system
at large scales, since the evolution of the pressure is connected with the heating produced at small scales. To
avoid this problem, in a third run (Run 3), we eliminated this unrealistic heating, by replacing Eq. (4) with the
adiabatic condition pq�c = const. In fact, if the thermal conductivity kt is vanishing, eliminating the viscous
and resistive terms, Eq. (4) reduces to:
op
ot
¼ �r � ðvpÞ � ðc� 1Þpr � v: ð24Þ
Using Eq. (1), $ Æ v can be eliminated in Eq. (24), which can be solved to give the adiabatic condition
pq�c = const. In this case the plasma density increases in the center, as shown in Fig. 6. Therefore, the inclu-
sion of compressibility drastically changes the long term time evolution of the system, with respect to the case
when p = 0 and q = const. Again the reversal of the magnetic field is quickly lost and then restored after
t . 70, but, contrary to what has been observed in [4], the reversal parameter changes sign several times
(Fig. 7).
Fig. 5. Radial profiles of density at t = 100 for Run 2.

Fig. 6. Radial profiles of density q(0,0) at t = 100 in the adiabatic case (Run 3).



Fig. 7. Time evolution of the reversal parameter in the compressible adiabatic case (Run 3).
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7. Conclusions

We developed a numerical code to solve the compressible MHD equations in cylindrical geometry and we
used it to study the time evolution of a reversed field pinch configuration. In previous studies of this problem
[4], the pressure has been assumed to vanish and the density to be constant and spatially uniform. Such an
approach is simpler than to use the full set of MHD equations and it has the advantage of describing physical
effects, such as field reversal, actually observed in the RFP devices. However, it is intrinsically not consistent:
constant and uniform density requires a divergenceless velocity field, but this latter condition is not necessarily
fulfilled when p = 0 (cold plasma). In particular, we verified that in such a case $ Æ v 6¼0, which produces a den-
sity increase around the axis, in contrast with the assumption of constant and uniform q. This inconsistency
could affect the time evolution of the system as predicted by the numerical model.

The only way to overcome this problem is to properly describe compressibility, by including both the con-
tinuity equation and the equation for the pressure in the numerical model. This represents the main motivation
of the present paper. We followed the latter approach, which is more complex than the former one for different
reasons: first, the compressible model has two more variables (q and p) and two more equations to be solved.
The second difficulty concerns the treatment of boundary conditions, which is more complex due to the pres-
ence of magnetosonic fluctuations (not present in the other model) which can propagate across the magnetic
field, thus connecting the plasma inside the spatial domain with the outside. The complexity of the boundary
conditions treatment is enhanced by the cylindrical or toroidal geometry. We used a characteristic decompo-
sition method. Such a method has been applied in the past for hydrodynamics equations in Cartesian geom-
etry [3]. Here we derived characteristic boundary conditions for the MHD equations in cylindrical geometry,
in the case of a rigid, conductive wall.

After checking the energy conservation, we tested the code by simulating a zero-pressure plasma with con-
stant density. In that case it has been shown ([5,4]) that the dynamo effect acts so as to sustain the field reversal
against resistive diffusion. Our code succeeds in reproducing these results. After that, we considered the com-
pressible case, first using an energy equation which includes viscous and resistive sources and then with an
adiabatic energy equation to avoid the eccessive heating coming from the high values of the viscosity and resis-
tivity used in the simulations. In the latter case the field reversal actually takes place, but the time evolution is
again different from that derived for p = 0 and q = const.

In conclusion, our calculation shows the importance of a fully compressible MHD cylindrical code: includ-
ing compressibility in the RFP configuration not only eliminates an inconsistency of previous models, but it
modifies the time evolution derived from the model. Such points should be taken into account in numerical
modelling of RFP devices.

Appendix A

The calculation is made here for the cylindrical geometry, but can be extended to the toroidal case. The
metric tensor in cylindrical geometry is:
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gij ¼
1 0 0

0 r2 0

0 0 1

0
B@

1
CA
and the covariant components of a generic vector A are:
A1 ¼ Ar;

A2 ¼ rAh;

A3 ¼ Az:
Calculating the spatial derivatives in Eqs. (1)–(5) using the covariant components of the vectors, the LODI
equations, without the source terms, are:
oq
ot
þ q

ovr

or
þ vr

oq
or
¼ 0; ð25Þ

ovr

ot
þ vr

ovr

or
þ 1

q
op
or
þ Bz

q
oBz

or
þ Bh

rq
oðrBhÞ

or
¼ 0; ð26Þ

oðrvhÞ
ot
þ vr

oðrvhÞ
or
� Br

q
oðrBhÞ

or
¼ 0; ð27Þ

ovz

ot
þ vr

ovz

or
� Br

q
oBz

or
¼ 0; ð28Þ

oBr

ot
¼ 0; ð29Þ

oðrBhÞ
ot
þ vr

oðrBhÞ
or

þ rBh
ovr

or
� Br

oðrvhÞ
or
� rvh

oBr

or
¼ 0; ð30Þ

oBz

ot
þ vr

oBz

or
þ Bz

ovr

or
� Br

ovz

or
� vz

oBr

or
¼ 0; ð31Þ

op
ot
þ vr

op
or
þ cp

ovr

or
¼ 0: ð32Þ
Defining the vector
U ¼ ðq; vr; rvh; vz;Br; rBh;Bz; pÞ;
which contains the covariant components of the vectors V and B, the LODI set of equations can be cast in the
following matrix form
oU a

ot
þ Aab

oUb

or
¼ 0;
where Greek indices vary in the range {1, . . ., 8} and {Aab} are the elements of the following matrix:
A ¼

vr q 0 0 0 0 0 0

0 vr 0 0 0 Bh
rq

Bz
q

1
q

0 0 vr 0 0 � Br
q 0 0

0 0 0 vr 0 0 � Br
q 0

0 0 0 0 0 0 0 0

0 rBh �Br 0 �rvh vr 0 0

0 Bz 0 �Br �vz 0 vr 0

0 cp 0 0 0 0 0 vr

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

:

The velocities of the waves propagating in the radial direction are the eigenvalues {k1, . . . ,k8} of the matrix A:
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k1 ¼ 0; k2 ¼ vr; k3 ¼ vr � cAr; k4 ¼ vr þ cAr;

k5 ¼ vr � cs; k6 ¼ vr þ cs; k7 ¼ vr � cf ; k8 ¼ vr þ cf
with the following definitions:
cAr ¼
Brffiffiffi
q
p ; c2

T ¼
cp
q
;

cs ¼
1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

A þ c2
T �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2

A þ c2
T Þ

2 � 4c2
T c2

Ar

qr
;

cf ¼
1ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2

A þ c2
T þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2

A þ c2
T Þ

2 � 4c2
T c2

Ar

qr
;

c2
A ¼

B2
r þ B2

h þ B2
z

q
;

cA is the Alfvén velocity, cs and cf are the velocities of slow and fast magnetosonic waves, respectively, Å is the
sound speed and cAr is the Alfvén velocity in the r direction. The eight eigenvalues correspond to eight inde-
pendent eigenvectors
V1 ¼

1
c2

T

� vr
qc2

T

�rBr
B2

r ðcp�qv2
r Þvhþqv2

r ð�B2
z vh�cpvhþqv2

r vhþBhBzvzÞ
cpqvrðB2

r�qv2
r ÞðBhvhþBzvzÞ

Br
ðB2

r�qv2
r Þðqv2

r�cpÞvz�BhBzqv2
r vhþB2

h
qv2

r vz

cpqvrðB2
r�qv2

r ÞðBhvhþBzvzÞ
B2

r ðcp�qv2
r Þþqv2

r ðqv2
r�cp�B2

h
�B2

z Þ
cpqvrðBhvhþBzvzÞ

r B2
r ðqv2

r�cpÞvhþqv2
r ðB2

z vhþcpvh�qv2
r vh�BhBzvzÞ

cpðB2
r�qv2

r ÞðBhvhþBzvzÞ

ðB2
r�qv2

r Þðqv2
r�cpÞvz�BhBzqv2

r vhþB2
h
qv2

r vz

cpðB2
r�qv2

r ÞðBhvhþBzvzÞ

1

0
BBBBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCCCA

;

V2 ¼ ð 1; 0; 0; 0; 0; 0; 0; 0 Þ;

V3 ¼ 0; 0; �rBz
Bh
ffiffi
q
p ; 1ffiffi

q
p ; 0; �rBz

Bh
; 1; 0

	 

;

V4 ¼ 0; 0; rBz
Bh
ffiffi
q
p � 1ffiffi

q
p ; 0; � rBz

Bh
; 1; 0

	 

;

V5 ¼ 1
c2

T
; � cs

cp ;
rcsBrBh

qcpðc2
s�c2

Ar
Þ ;

csBrBz
qcpðc2

s�c2
Ar
Þ ; 0; rc2

s Bh

cpðc2
s�c2

Ar
Þ ;

c2
s Bz

cpðc2
s�c2

Ar
Þ ; 1

	 

;

V6 ¼ 1
c2

T
; cs

cp ; �
rcsBrBh

qcpðc2
s�c2

Ar
Þ ; �

csBrBz
qcpðc2

s�c2
Ar
Þ ; 0; rc2

s Bh

cpðc2
s�c2

Ar
Þ ;

c2
s Bz

cpðc2
s�c2

Ar
Þ ; 1

	 

;

V7 ¼ 1
c2

T
; � cf

cp ;
rcf BrBh

qcpðc2
f
�c2

Ar
Þ ;

cf BrBz

qcpðc2
f
�c2

Ar
Þ ; 0;

rc2
f
Bh

cpðc2
f
�c2

Ar
Þ ;

c2
f
Bz

cpðc2
f
�c2

Ar
Þ ; 1

	 

;

V8 ¼ 1
c2

T
; cf

cp ; �
rcf BrBh

qcpðc2
f
�c2

Ar
Þ ; �

cf BrBz

qcpðc2
f
�c2

Ar
Þ ; 0;

rc2
f
Bh

cpðc2
f
�c2

Ar
Þ ;

c2
f
Bz

cpðc2
f
�c2

Ar
Þ ; 1

	 

:

The radial derivatives can be expressed as a linear combination of the eigenvectors {V1, . . . ,V8} with coeffi-
cients, respectively: fL1; L2; L�Ar; L

þ
Ar; L

�
s ; L

þ
s ; L

�
f ; L

þ
f g:
oU

or
¼ L1V1 þ L2V2 þ L�ArV3 þ LþArV4 þ L�s V5 þ Lþs V6 þ L�f V7 þ Lþf V8;

oq
or
¼ L2 þ

1

c2
T

ðLþs þ L�s þ Lþf þ L�f þ L1Þ; ð33Þ
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ovr

or
¼ cs

cp
ðLþs � L�s Þ þ

cf

cp
ðLþf � L�f Þ �

vr

qc2
T

L1; ð34Þ

oðrvhÞ
or
¼ rBz

Bh
ffiffiffi
q
p ðL�Ar � LþArÞ þ

rcsBrBh

qcpðc2
s � c2

arÞ
ðL�s � Lþs Þ þ

rcf BrBh

qcpðc2
f � c2

arÞ
ðL�f � Lþf Þ þ S3L1; ð35Þ

ovz

or
¼ 1ffiffiffi

q
p ðL�Ar � LþArÞ þ

csBrBz

qcpðc2
s � c2

arÞ
ðL�s � Lþs Þ þ

cf BrBz

qcpðc2
f � c2

arÞ
ðL�f � Lþf Þ þ S4L1; ð36Þ

oBr

or
¼ S5L1; ð37Þ

oðrBhÞ
or

¼ � rBz

Bh
ðL�Ar þ LþArÞ þ

rc2
s Bh

cpðc2
s � c2

arÞ
ðL�s þ Lþs Þ þ

rc2
f Bh

cpðc2
f � c2

arÞ
ðL�f þ Lþf Þ þ S6L1; ð38Þ

oBz

or
¼ ðL�Ar þ LþArÞ þ

c2
s Bz

cpðc2
s � c2

arÞ
ðL�s þ Lþs Þ þ

c2
f Bz

cpðc2
f � c2

arÞ
ðL�f þ Lþf Þ þ S7L1; ð39Þ

op
or
¼ L�s þ Lþs þ L�f þ Lþf þ L1; ð40Þ
where the terms: Si, with i = 1, . . . , 8 are the ith components of the eigenvector V1, respectively.
If we substitute the radial derivatives into the system (25)–(32), then we can write the equations at the

boundary with the conditions vr = vh = vz = Br = 0 (10)–(14).
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